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Errata

The errata list contains known errors and their corrections. With the exception of short footnotes
indicating the presence of an error and giving a link to the errata list, the original text has not
been modified.

‘ No. ‘ Error description and correction ‘ Error detection ‘

1 | In the proof of proposition 4.1, page 10, the statement: “For each | Holger Buck
vertex v put into the work list by tnworklist holds: All its as- | (July 1997)
cendents which are not also descendents are at earlier positions in
the worklist.” is wrong, since the way to a descendent of v may
be blocked by a marked vertex. However, proposition 4.1 remains
valid because the above statement holds for the first vertex of a
(proper or improper) component occurring in the work list. This
can be proved, for instance, using the acyclic structure of the re-
duced digraph (see section 6) .

2 | In procedure pathmatriz (table 4, page 13) the variable v erro- | Holger Buck
neously has two different meanings. It should denote as a global | (July 1997)
variable the root of the actual component whereas the vertex with
which pathmatriz is called should be denoted differently. The Pro-
cedure must read correctly:

pathmatriz(newpathlength, u)

1 for (each child w of )
2 {if ((u and w belong to the same component) A
(the entry (newpathlength,w) in the path
matrix is NULL))
3 { add the entry (newpathlength,w) to the path matrix;
4 if (w equals v)
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1 Introduction

Markov chains? are an important field of stochastic processes and find applications in various
areas, among them economics and computer science.

The behaviour of a Markov chain is governed by the probability distribution of the initial states
and the transition probabilities. In many cases, the long run behaviour of the Markov chain
depends only on the latter. In any case, the transition probabilities determine completely the
structure in the set of states (state structure). Normally, the transition probabilities are given
as a transition matriz. An example is shown in figure 1. Another widely used representation of

012 3 4 5 n n+1
0 [¢g p 0000 0 0
1 |¢g 0p 000 0 0
2 |¢g 00 p 00O 0 0
3 |¢g 000 po0O 0 0
4 |¢q 0000 p 0 0
' ' 0<p,g<liptqg=1
n—1{¢g 0 0 0 0 0 p 0
n |qg 00 00 0 0

Figure 1: Transition Matriz of a Markov Chain

transition probabilities is a transition graph. Figure 2 shows the transition graph corresponding

Figure 2: Transition Graph of a Markov Chain

3To be precise: Discrete time Markov chains with stationary transition probabilities.



2 1 INTRODUCTION

to the transition matrix of figure 1. The transition graph of a Markov chain is a weighted directed
graph (weighted digraph), with an arc from state a to state b iff* the transition probability from
a to b is positive. In this case, the transition probability is the arc weight. The weight of a path®
in the transition graph is the product of its arcs’ weights and gives the (conditional) probability
of exactly seeing the sequence of states given by the path, when started at the path’s initial
state.

The properties of the states of a Markov chain which determine the state structure and which
are used to classify the states are connectivity, periodicity, and recurrence. In the case of Markov
chains with finite state space, all three property classes depend only on the transition graph’s
structure and remain identical when the transition probabilities change, as long as there are no
changes from positive to zero or vice versa.

In the case of Markov chains with infinite state space, this is true only for connectivity and
periodicity. Recurrence properties (i. e. a state is either transient, null recurrent, or positive
recurrent), do depend on the numerical values of the transition probabilities, i. e. on the weights
of the arcs of the transition graph.

In any case, connectivity and periodicity of a Markov chain are important properties and can be
defined and investigated by purely graph theoretic (and rather elementary) means.

Standard text books covering Markov chains sometimes do not use graph theoretic representa-

tions at all (Ross [Ross83], Feller [Fell68], Chung [Chun67|, Langrock/Jahn [LaJa79], Resnick

[Resn92], Asmussen [Asmu87], Rosenblatt [Rose74|, Kohlas [Kohl77]|, Grimmet /Stirzaker [GrSt82],
Gnedenko [Gned87|, Mathar/Pfeifer [MaPf90|, Kemeny/Snell [KeSn76]|, Freedman [Free83|, Re-

vuz [Revu84]) or use them as a help for intuition, mostly in examples (Qinlar [Cinl75], Isaac-

son/Madsen [IsMa76], Osaki [Osak92], Fahrmeir/Kaufmann/Ost [FaKO81]). In proofs and def-

initions, graph theoretic concepts and arguments are used, if at all, only in an indirect, hidden,

and inconsistent manner. They are not clearly separated from probabilistic and analytical argu-

ments.°

Authors of text books covering graph theory, always endeavour to present nice application ex-
amples, seem not to have noticed Markov chains. Particulary, they do not treat periodicity of
digraphs at all (Aho/Hopcroft/Ullman [AhHUS83| and [AhHU74|, Carré [Carr79], Chen [Chen90],
Gibbons |Gibb85]|, Bogart [Boga83|] Bohm/Weise [BoWe81|, Horowitz/Sahni [HoSa76|, Konig
[Koen90], Jungnickel [Jung90], Kohlas [Kohl87]|, Sachs [Sach70] Oberschelp/Wille [ObWiT76],
Sedgewick [Sedge91|, Mehlhorn [Mehl84]). There are some exceptions: Anderson [Ande70| and
Gondran/Minoux [GoMi84]| contain some remarks on connectivity in finite Markov chains. Nolte-
meier [Nolt76] uses powers of the adjacency matrix of the transition graph to classify the states
of a finite Markov chain and to calculate the period of a strongly connected component. Mau-
rer/Ralston [MaRa91] offer both, a chapter on digraphs and a chapter on Markov chains. They
claim to point out an interplay between Markov chains and digraphs, but use digraphs only to
appeal to intuition.

This report attempts to fill the gap. The rest of the report is organized as follows: In section 2
connectivity is treated for the sake of completeness. All graph theoretic results are well known
and standard text book material. A "Markov chain view" is pointed out. Section 3 introduces
periodicity of digraphs and presents all important properties by purely graph theoretic means.

Yif and only if

SPaths in digraphs are always assumed to be directed paths.

6An explicit and clear mention of graph theoretic methods is made in Medhi [Medh94]. A formula due to
Solberg [Solb75] suitable to calculate the stationary probability distribution of a finite, aperiodic, and irreducible
Markov chain is presented.



In section 4 an algorithm to find the structure of finite digraphs is presented. Depth first search
is used in the well known manner to find the components of a digraph. Breadth first search is
applied to find the periodicity of a component. In section 5 some efficiency considerations are
given. Concluding remarks are contained in section 6.

Terminology: In the following, we shall speak of wvertices or nodes of a digraph instead of
states of a Markov chain. An arc points from a parent (initial vertez, predecessor) to a child
(terminal vertex, successor). A path is a finite (non-empty) sequence of arcs, where each arc’s
terminal vertex is the initial vertex of the next arc. The number of arcs of a path is the path
length. A path is closed or a cycle iff the initial vertex of the first arc and the terminal vertex of
the last arc are the same. A loop is a one-arc cycle. A path which is not closed is simple iff all its
vertices are pairwise distinct. A cycle is simple iff it is a loop or iff removing its last arc a simple
not closed path results. A vertex b is accessible (can be reached) from a vertex a iff there is a
path from a to b, i. e. the initial vertex of the first arc is a and the terminal vertex of the last
arc is b. Any vertex which can be reached from a is a descendent of a. Any vertex from which
b is accessible is an ascendent of b. A run is a (non-empty) finite or infinite sequence of arcs for
which each finite head is a path. Associated with a run is the idea of a token traveling through
the digraph in discrete time steps, going in each step from one vertex to the next.

2 Connectivity

A vertex of a digraph is called vertex of return iff there is a path from the vertex to itself. Iff
there is no such path the vertex is called a vertex of no return. Vertices H and D of the digraph
of figure 3 are vertices of no return, all others are vertices of return.

As easily can be verified, strong connectivity (i. e. mutual accessibility) is an equivalence relation
in the set of vertices of return of a digraph. Each equivalence class of mutual accessible vertices
and also each vertex of no return is called a strongly connected component, component for short.
In figure 3 dotted lines are used to show the components. A component consisting of vertices of
return is called a proper component.

Vertices F' and A of figure 3 are both vertices of return. However, there is an important difference
between them. All vertices accessible from A belong to the same component, i. e. from all these
vertices there is a path back to A. This is not the case for F', as for instance, D can be accessed
from F. A vertex of return from which only vertices of the same component can be accessed
is called a wertex of return with no escape. A vertex of return from which vertices outside its
component can be accessed is called a verter of return with escape. Of course, escapability is a
component property: Either all vertices of a proper component are vertices of no escape or all
are vertices of escape. Borrowing terminology from Markov chains, a vertex of return with no
escape is called essential, the component to which it belongs is called irreducible, closed, or final.
A vertex of no return or a vertex of return with escape is called unessential. The denominations
stem from the fact that in a Markov chain all unessential states are transient and, if the state
space is finite, all essential states are positive recurrent (see for instance [Cinl75], [IsMa76],
[Ross83|, or [Stie95c|). In the example of figure 3 the components generated by A and I are
closed, the component generated by G is not closed.

The transition graph of a Markov chain has no terminal vertices. If it is finite, there exists at
least one essential vertex as stated by the following proposition.

Proposition 2.1 Fach finite digraph with no terminal vertices contains an essential vertex.
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Figure 3: Strongly Connected Components of a digraph

Proof: The proposition is true if there is no unessential vertex. Be 7y an unessential vertex.
Then there exists i1 accessible from 4g but 7 not accessible from i;. In particular, i¢ is different
from 47. If 41 is unessential, too, then there exists 4o such that 7p and 4; are not accessible from
19. Again, i9 is different from 4y and 4;. This construction is continued until a vertex is reached,
which only has essential children. This must be the case, for otherwise an infinite sequence of
pairwise distinct vertices could be constructed contradicting the finiteness of the digraph. 07

3 Periodicity

See figure 3. If a run is started with step 0 at vertex A, then A will be visited at step n, iff n
is a multiple of 3. This property is important for Markov chains and gives rise to the following
definition.

Definition 3.1 A vertez of return i of a digraph has period p; (p; € N) iff the length of all paths
from i to i is a multiple of p; and there is no p' > p; with the same property.

Obviously, every vertex of return 4 has a uniquely defined period which is given by
p; := ged{lengthof(w) |w € P}, 8

where P is the set of all paths from ¢ to 4. If p; = 1, ¢ is called aperiodic. Periodicity is a
component property:

"0 means end of a proof.
8gcd: greatest common divisor



Proposition 3.1 Two mutually accessible vertices of a digraph have the same period.

Proof: Be i and j mutually accessible vertices of a digraph and be p; the period of 7 and p; the
period of j. We chose a closed path from 4 to j and back to ¢. Its length be [. This path, being
also a path from j to j yields I = ky - pj. Then a second, completely arbitrary path from i to s
is chosen (see figure 4). Tts length be n. From the two paths a new path is constructed: From j

length n

Figure 4: Mutually accessible vertices have the same period

to ¢ following the first path, then from ¢ to ¢ following the second path and returning from % to j
along the first path. The length of the compound path is I + n and, for being a path from j to
J there exists ky with [ +n = ky - p;. Therefore

n=ky-pj—ki-pj = (k2 — k1) - pj.
The length of each path from % to ¢ is a multiple of p;, so p; > p;. In the same way p; > p; can
be shown, from which
bi = DPj-
O

Checking all paths from ¢ to 7 can be very difficult. So, other criteria to determine the period of
a component are needed. In Markov chain theory paths of first return are important. A path of
first return to vertex ¢ is a path from 4 to ¢ where 7 is visited only at the beginning and at the
end. Be P, the set of paths of first return to vertex i.

Proposition 3.2 Be i a vertex of return of a digraph. Then
pi = ged{lengthof (w) |w € P;}.

Proof: Be A := {lengthof(w)|w € P;} and B := {lengthof(w)|w € P;}. From B C A follows
ged(B) > ged(A). If [ divides all n € B, [ also divides all sums of numbers in B. As each path
from 4 to ¢ is a sequence of paths with first return to 4, its length is the sum of the lengths of
these and therefore divisible by /. That means ged(B) < ged(A) from which

ged(B) = ged(A).

O
From Proposition 3.1 follows that the set of all cycles of a proper component has the period as

greatest common divisor. Using analogous arguments as in the prove above, it can be seen that
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the set of all simple cycles of a proper component also has the period of that component as greatest
common divisor. Concerning simple cycles, this is formulated as the following proposition.

Proposition 3.3 If C is the set of all simple cycles of a proper component of a digraph and p
its period, then
p = ged{lengthof (w) |w € C}.

O
A path of first return needs not be a simple cycle and, in general, it is not true, that the lengths

of the simple cycles through a fixed vertex have the period as gcd. The only simple cycle of the
irreducible digraph of figure 5 containing vertex B has length 5, but the period is 1, due to the

Figure 5: Aperiodic component

loop at vertex A. This example also shows that for all n > 5 there is a path of length n from B
to B. The following proposition states that this property holds in general.

Proposition 3.4 Be i an aperiodic vertex of a proper component of a digraph. Then there exists
ng € N such that for all n > ng there is a path from i to i of length n

Proof: See for instance [IsMa76] or [Stie95c]. ]

ng depends on ¢ and cannot be smaller than the length of the shortest simple cycle through 1.
Therefore, in infinite components ng is in general unbounded in 3.

If the period of a proper component is at least 2 that component can be structured further. As
an example, see the digraph of figure 6. It consists of one closed component of period 2. From
vertex A an even number of steps always leads back to A. Departing from a vertex B one arrives
after an even number of steps always at a vertex B. The set of vertices is partitioned into two
closed sets of vertices mutually accessible in 2 steps. The classes are

{A} and {BlaBQa"'aBna"'}a

and with every single step a change from one class to the other is made. The following theorem
states that this holds in general.

Theorem 3.1 Be C a proper component of a digraph and be p > 2 its period. If only paths
within the component are considered, then the following holds



Figure 6: Decomposition of a irreducible component of period 2

1. Mutual accessibility in n-p (n > 1) steps is an equivalence relation over C.

2. C is partitioned into p equivalence classes. FEach step leads from one class to another.
Every p steps in sequence pass through all p classes in a fized order and the last step ends
i the first class of the sequence.

3. If only the vertices of one equivalence class are considered and a derived digraph structure
of p-step-accessibility is imposed, this new digraph is closed and aperiodic.

Proof:

1. Reflexivity is a consequence of periodicity p. Transitivity is obvious.
Symmetry: Be there a path from ¢ to 7 of length ny - p. This path can be continued from
j to i and the compound path is of length ns - p, for p being the period. Thus there exists
a path from j to ¢ of length (ny — nq) - p.
If remains to prove that all paths from one vertex to another vertex of the same class have
length n-p. This is the case, for otherwise a closed path of a length which is not a multiple
of p could be constructed.

2. Be ip any vertex of the component and be given a closed path ig,%1, -, %ip—1,%p, -, %0.

The vertices 49,41, - ,%,—1 belong to pairwise disjoint equivalence classes for otherwise a
closed path with a length not being a multiple of p could be constructed.
If 7 is an arbitrary vertex of C' and a path from 4, _; to j is given, then choosing the right
starting vertex from the vertices g, - -,7,—1 there is always a path of length n -p from one
of these vertices to 7. So, there are exactly the p equivalence classes given by ig, 41, -+, ip—1.
Every sequence of steps visits the classes in the cyclic order

[’io], [il]a B [ip—l]a [ZO] :



8 4 ALGORITHMS

[i] is the class generated by i. In fact, be j a vertex accessible in one step from vertex i in
[in] (0 <mn <p-—1). Let us choose a path
ins i(n—l—l) modp> "% J-

The length of 4,,, i(n+1) modp: " " *» ¢ 1s amultiple of p, and so is the length ofz'(nH) modps """ J-
That means j € [i(, 1) mod -

3. The derived digraph is closed, for its vertices are mutually accessible and no other vertices
are accessible. If the new digraph had period f > 1, then in the original equivalence class
all closed paths had length n - f - p and p were not the original period.

4 Algorithms

To effectively find the components and periodicity classes of a digraph, specific properties of
that digraph can be used. In the case of infinite digraphs, this is the only way to establish the
components and periodicity classes. In the case of finite digraphs there exist general algorithms,
one of which will be presented in the following.

To be specific, let us assume the digraph is given as a data structure of the form of figure 7. The

Vertex List

Parent List Child List
e v e < = e oo 0

Figure 7: Initial data structure representation of a digraph

descriptions of the vertices, the vertex entries, form a linked list, the verter list. Each vertex is
head of two chains of arc entries, the child list and the parent list.

The data structure we want to obtain is shown in figure 8. A linked list of component entries
is at the top (component list). Each component entry points to a periodicity pointer array with
number of entries equal to the period of that component, the order of the entries corresponding
to the order of the periodicity classes (see theorem 3.1). If the component is a vertex of no return,
there is 1 entry in the periodicity pointer array. Each entry in the periodicity pointer array is the
head of the linked list of those vertices which are members of the corresponding periodicity class



List of
components

.......... Per10d1c1ty
pointer arrays

i List of vertices of
- a periodicity class

vA vA v A v

vhyhyid
IN2N 787!

CcC PC CN PN

Figure 8: Component/Periodicity representation of a digraph

(periodicity list). Each vertex entry is head of 4 chains of arc entries: children in the class (CC),
parents in the class (PC), children not in the class (CN), and parents not in the class (PN). We
shall call this a component/periodicity representation of a digraph.

The algorithm presented in table 3 constructs the component/periodicity representation of a
digraph from a representation as in figure 7. The algorithm is formulated in a C-like style.

Lines 1-3
Using depth first search, i. e. procedure inworklist (table 1), the vertices of the digraph are
inserted into a work list in a LIFO manner. This is done in the order of procedure completion.

Lines 4-7:

Once the work list is complete, it is processed taking always the first element of the actual (i. e.
remaining) work list as the root of a new component. The members of this component are found
starting a depth first search in backward direction, procedure buildmemberlist (see table 2). All
vertices found this way which are not yet members of a component are linked to the member list
of the actual component. All these vertices are unlinked from the work list.

Lines 8-12:
If the member list is empty, the actual vertex on the work list, is a vertex of no return. The
corresponding data structure is completed and the vertex removed from the work list.

It is well known that lines 1-12, especially procedure inworklist and buildmemberlist indeed yield
the components of a digraph, see for instance [AhHU83]. For the sake of completeness, this
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property is proved as proposition 4.1 below.

Lines 13-23:

If the member list is not empty, a component of mutually accessible vertices is given. To find its
period and to establish its periodicity classes, a pathmatriz is used. This is a square matrix with
path lengths 1 to componentsize as rows and vertex indices 0 to componentsize — 1 as columns.
A non null entry (7,7) means that there is a path of length 4 from the component root to the
vertex indexed j of the component. Procedure pathmatriz (see table 4) takes a path length and
a vertex index as input and puts all children of the given vertex into the periodicity matrix row
given by the path length. In addition, pathmatriz updates the value of period.

Lines 16-23 describe a breadth first search in the component, starting at the component root. The
search is stopped when the period is found to be equal to 1 or if all paths from the component
root with length up to and including componentsize are recorded in the periodicity matrix.
Proposition 4.2 below proves that procedure pathmatriz indeed calculates correctly the period of
the component.

Lines 24-27:

Once the period of the component is known, the periodicity pointer array is allocated. Using
the entries in the periodicity matrix, the vertices of the component member list are distributed
to the periodicity class lists using theorem 3.1.

Lines 28-36:

These statements partition the incoming and outgoing arcs of each vertex of the component into
arcs within the component and arcs crossing components.

In the following the propositions announced are proved.

Proposition 4.1 Lines 1-12 of the algorithm of table 3 including the procedures inworklist (table 1)
and buildmemberlist (table 2) correctly find the strongly connected components of a digraph.

Proof: For each vertex v put into the work list by inworklist holds:? All its ascendents which are
not also descendents are at earlier positions in the worklist. In fact, such an ascendent is processed
either in the same recursive sequence of inworklist and therefore completes its processing later
than v or it is processed in a later recursive call sequence. In both cases the LIFO order of
insertion into the worklist guarantees an earlier position. From this and the fact that all vertices
already processed are removed from the worklist, it can be concluded by induction that the
actual top of the worklist is root of a new component and all its ascendents not yet assigned to
a component must also be accessible from it and so belong to the same component. O

Proposition 4.2 Lines 15-23 of the algorithms of table 3 including procedure pathmatriz (table 4)
correctly calculate the period of the component.

Proof: Be v the root of the component with respect to which the periodicity matrix is built.
According to proposition 3.3, the period of a component can be calculated as the greatest common
divisor of the lengths of all simple cycles in that component. If a simple cycle contains v lines
4-10 of procedure pathmatriz assure that the length of that cycle is taken into account.

If v is not part of the simple cycle, then there exists a shortest path from v to the cycle. Be w
the vertex on the cycle where this path ends. Be [y the length of the path and Iy the length of
the cycle. The minimal length of the path yields

l1 < componentsize — 5.

See Errata, error no. 1, July 1997.
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Therefore, vertex w appears in the periodicity matrix at least twice: In row [y and in row Iy + [s.
Lines 11-21 of procedure pathmatriz take care that the length ls of the simple cycle is considered
when the period is calculated.

The difference newpathlength — pathlength in line 16 of procedure pathmatriz is not always a
cycle length, but it is always a multiple of the period. In fact, be there two paths from v to w
with lengths k1 and k3. We choose a path from w to v. Be m its length. Then there are a path
from v to v with length k; + m and a path from v to v with length ko + m. The difference of
the two lengths, that is ko — k1 must be divisible by the period. O

inworklist(v)

1 mark v,

2 for (each child w of v)

3 {if (unmarked w) inworklist(w);
4 b

5

insert v at the top of the work list;

Table 1: Depth first search in forward direction to build a work list

buildmemberlist(v)

for (each parent w of v)
{if (w not yet assigned to a component)
{mark w as assigned to actual component and insert into its member list;
unlink w from work list;
buildmemberlist(w);

b

SRS N N S

Table 2: Depth first search in backward direction to build a member list of vertices of a component
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mainprogram,

b

{add

vV =
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}

else

{
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h
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S ©

{

Lo Lo Lo Lo Lo Qo
D AN o~
-

—

for (each vertex v on the vertex list)
{if (v is not marked) inworklist(v);

while (top of work list is not empty)

buildmemberlist(v);
if (member list empty);

%

for (all components)
{for (all periodicity classes of each component)

new entry to component list;
top of the work list;

mark component list entry as no return and complete structure
with v as the only member of the component;
unlink v from work list;

mark component list entry as return;
period = 0;
pathmatriz(1,v);
oldpathlength = 1;
while ((oldpathlength < componentsize) A (period # 1))
{for (each end vertex w of a path of length oldpathlength from v)
{ pathmatriz(oldpathlength + 1, w);
};
oldpathlength = oldpathlength + 1;
b
allocate periodicity pointer array;
distribute vertices from member list to periodicity classes;

for (all vertices of each periodicity class)
{ distribute the entries of the child list to the class child list
and the non-class child list;
distribute the entries of the parent list to the class parent list
and the non-class parent list;

Table 3: Main program to construct the component/periodicity representation of a digraph
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pathmatriz(newpathlength, v)®

1 for (each child w of v)
2 {if ((v and w belong to the same component) A
(the entry (newpathlength,w) in the path matrix is NULL))
3 {add the entry (newpathlength,w) to the path matrix;
4 if (w equals v)
5 {
6 if (period equals 0)
7 {period = newpathlength;}
8 else
9 {period = gcd(period, newpathlength);};
10 }
11 else
12 {for (each pathlength < newpathlength)
13 {if (the entry (pathlength,w) in the path matrix is not NULL)
1y {
15 if (period equals 0)
16 { period = newpathlength — pathlength;}
17 else
18 { period = ged(period, newpathlength — pathlength);};
19 b
20 };
21 )
22 };
25 h

“See Errata, error no. 2, July 1997.

Table 4: Construction of the path matriz and calculation of the period of a component
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5 Efficiency Considerations

The construction of the work list (lines 1-3 in table 3 and procedure inworklist, table 1) takes 1
processing operation for each vertex and 1 test operation for each arc of the digraph.

The construction of the memberlists of the components (lines 4-11 of table 3 and procedure
buildmemberlist, table 2) again takes 1 processing operation per vertex and 1 test operation per
arc.

All the above together costs O(n?) operations in the worst case, n being the number of vertices
of the digraph.

Distributing the vertices of the member list is not explicitly described in table 3. It can be done
searching for each vertex of the member list for the smallest path length in the path matrix. The
complexity of this is O(n?) in the worst case. It can be reduced to O(n) keeping a pointer to the
first non null entry of each column of the path matrix.

The dominating efficiency factor are the construction of the path matrix and the calculation of

the period (lines 18-22 of table 3 and procedure pathmatriz, table 4). In the worst case, the

digraph consists of only 1 component and the number of children of each vertex is of order O(n).

So, to build up one row, O(n) insertion operations and O(n?) tests have to be done. Each

insertion to row k, takes k — 1 periodicity tests. As there are n — 1 rows to build this way the

complexity in the worst case is i (k — 1) - O(n) operations and (n — 1) - O(n?) tests yielding
k=2

together O(n?). This is not satisfying and better periodicity algorithms should be searched for.

Remark: Stopping the path matrix construction as soon as aperiodicity is detected (line 18)
does not reduce the algorithm’s worst case complexity for aperiodic digraphs. The digraph in
figure 9 is an example when A; is the root of the component.



éFrom each odd-numbered vertex in the dot-
An.q ‘ted rectangle there is an arc to each even-:
? ‘numbered vertex and vice versa. :

Figure 9: An aperiodic digraph with O(n®) complezity to find the period
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6 Concluding Remarks

Passing from the vertices of a digraph to the strongly connected components yields a directed
acyclic graph (dag), the reduced digraph. In the reduced digraph there is an arc from component
[A] to component [B] ([A] # [B]) iff there exists an arc from a vertex in [A] to a vertex in [B].

If instead of building classes from mutually accessible vertices classes are built using periodicity
according to theorem 3.1, a not so collapsed, intermediate digraph is obtained. We shall call
it the periodicity digraph of the given digraph. Periodicity digraphs can be characterized as
digraphs where at most 1 simple cycle passes through each vertex. They have a much simpler
structure than general digraphs. This fact may be useful in problems like path finding.

Figure 10 shows an example of a digraph, figure 11 shows its reduced digraph, and figure 12
its periodicity digraph. In the figures, ovals mean proper components or periodicity classes
respectively.

Figure 10: General digraph



Figure 11: Reduced digraph

\ {LK}

Figure 12: Periodicity digraph
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